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EFFECT OF GRAVITY 'GRADIENT TORQUE ON THE MOTION
OF THE SPIN AXIS OF AN ASYMMETRIC VEHICLE

By C.F. Harding

Research and Development
Principal Investigator

SUMMARY

A new method developed by the author was used to determine the effect of
gravity gradient torque on the motion of the spin axis of an asymmetric
vehicle in a precessing circular orbit about an oblate earth. It was discov-
ered that the relative attitude of two coordinate systems can be expressed
as a function of the angular-velocity time history as an alternate for the
usual parameters. When Euler angles are employed, a highly nonlinear
systern of six coupled equations results. The system can be reduced to a
single vector equation for the unknown angular velocity, w . The equation
is particularly simple and readily lends itself to a complete formal solution
by the theory of iterations. An acceptable approximation of w leads to the
summation of an infinite series for the determination of instantaneous atti-
tude. This general procedure was employed to investigate the stability of a
spin direction in space. The parameters of the Manned Orbiting Research
Laboratory (MORL) were used. The investigation shows there is no appre-
ciable coning; specifically, the spinaxis (axis of maximum moment of inertia)
deviates no more than 0.4 seconds of arcfrom the angular momentum vector
as it wanders in space. There is, however, a larger, yet slow, variation of
angular momentum fr%m initial position, although this is tolerable because
it is no more than 2.5 . An important discovery was that the upper bound of
2.5° is independent of boundary conditions which involve different spin-axis
angles to the Earth's equator. An extension of the method to elliptic orbits
is outlined in the appendix.

INTRODUCTION

The creation of on-board electrical power is an important requirement
of a manned orbiting space laboratory. If solar-cell arrays are used for
this purpose, they must be sun-oriented continuously for long periods of
time. To maintain the desired orientation, the space vehicle will be spin-
stabilized along a sun-vehicle axis. However, as the Earth advances along
its orbit about the sun, the space vehicle solar cells willbecomemaisaligned.



An on-board system capable of realigning the vehicle will be periodically
activated to correct such misalignment. Further, the vehicle will be subject
continuously to Earth gravity gradients, which will cause the spin axis to
precess. Spin-axis precession greater than 30° from the sun-pointing direc-
tion could cause a power loss of approximately 15%.

For the analysis, two assumptions are made: (1) the vehicle is a per-
fectly rigid asymmetric body (no energy loss caused by rotation), and
(2) the effect of an oblate Earth is accounted for by a precessing circular
orbit (no field change caused by oblateness). The first assumption is neces-
sary to formulate the problem; the second assumption is known to be
accurate.

The problem of gravity gradient torque has been studied bymany writers
in recent years. The usual procedure usedto obtainan analytical solution as
a function of time is to linearize the equations of motion and to consider the
body as having an axis of symmetryabout which it spins. Becauselineariza-
tion is inadequate for the problem considered here, a more general approach
is used. The author discovered that the problem can be completely solved
formally by critically reviewing the concept of attitude. It was determined
that attitude is a simple function of the angular-velocity history in infinite
series. With this description, a simple vector equation that lends itself to
iterations can be obtained. The convergence is fast. A detailed exposition
of the method follows.
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SYMBOLS

matrix-dyadic taking B* into B

semimajor axis of elliptic orbit

frame attached to vehicle

frame irrotational in space

idemfactor or 3x3 unit matrix

eccentricity

unit vectors of B¥%, seen in B

unit vectors of B*, seen in B*

gravitational constant for the Earth

(see equation (8))

(see equation (8))

moment of inertia dyadic at center of mass, seen in B
orbit inclination
ratio of G to R3, or ?:q2

mean angular motion in orbit

true anomaly

null or zero vector

orbit precession rate

initial vehicle spin azimuth

(see equation (7))

orbit angular velocity

distance from Earth center to vehicle
Earth-to-vehicle direction, seen in B
Earth-to-vehicle direction, seen in B*

partitioning of r(t) in terms of A"



s initial vehicle spin along No. 3 axis

t time

0 initial vehicle spin-noding angle

®(t) (see equation (7))

w (t) angular velocity of B about B%*, seenin B

wn(t) partitioning of w(t) in terms of "



GENERAL THEORY OF RIGID BODY MOTION

Introduction

The interaction of three point masses under an inverse square law and
the rotation of a heavy asymmetric top about a fixed point are the two most
outstanding unsolved problems in Classical Mechanics. The solutions for
these problems are unknown in what is loosely called '"closed form, ' which
usually means the solution is specified or described by means of familiar
functions and/or a finite set of integrations of known expressions (quadra-
tures). The language employed is arbitrary, since even the simplest trans-
cendental function, et, is ultimately defined in terms of an infinite process
and so is not strictly closed. The general second-order linear differential
equation with time-varying coefficients, furthermore, has been proved un-
solvable in closed form. The hope of solving all physical problems in
closed form is thus doomed at the start. The best alternative is to relax
the restrictions of closed form to what is called a formal integration, in
which each step toward the solution is specified in complete detail as a def-
inite set of algebraic operations and/or quadratures, whether or not their
number is finite. Thus, the definition of a formal integration allows the
steps to be carried out in principle, such as in the expression for et. The
goal in this section is the formulation of a method by which a large class of
rigid body problems can be formally solved.

The motion of a rigid body about its center of mass is described by
Euler's dynamical equations in connection with some kinematic relation-
ships between the attitude variables and the angular-velocity components.
Euler's equations, which merely state that the time rate of change of angu-
lar momentum is equal to the applied torque, are written with respect to the
body itself. The equations form a set of three coupled nonlinear first-order
differential equations for the angular-velocity components w;{i = 1, 2, 3).

The equations are

£,

3 = Ipwpws
Iy + (1) - I3dwgw; = £,
1P, + (I, - Iwjw, = 13

The torque components appear as forcing functions relative to the homo-
geneous equations (the free state) and usually are dependent on the attitude
variables and the time. The kinematic relations are of three types, depend-
ing upon whether direction cosines, Euler angles, or a set of four



parameters are employed. The direction cosine specification is composed

of nine first-order linear differential equations with six algebraic constraints.
The four-parameter set satisfies four first-order linear differential equations
with one algebraic constraint. On the other hand, Euler angles (the most
commonly used) satisfy three highly nonlinear first-order differential equations.
Euler angles are used because relatively simple equations result when small
motion approximations are introduced. The exact analysis, however, is com-
plex and requires a simultaneous solution of 12, 7, or 6 coupled nonlinear
equations, depending on the parameterization of attitude. The method to be
presented introduces a new description of attitude which reduces the number
of dependent variables to three~-the angular-velocity components, The mathe-
matics is carried out exclusively in vector-dyadic terminology, for which this
problem is especially suited. This compact formulation takes the form of a
simple nonlinear first-order vector integro-differential equation. The formal
integration is then carried out in two steps: (l) an iterative procedure to ob-
tain w(t), and (2) substitution of w(t) into the kinematics. By this approach,
the original equation is shown to be equivalent to an infinite set of linear first-
order vector differential equations. The set is not simultaneous, however,
but orders itself sequentially in a series of better approximations to the exact
value, that is, iteration., The theory of iterations is a tool of analysis for
formally solving a restricted class of differential equation systems. But the
majority of equations is not amenable to such an approach to a formal solution,
because, in general, all the steps are not explicit. Most importantly, the
equations for the higher approximations cannot be written in detail and thus
cannot be solved. The new method of expressing attitude accomplishes a
transformation of the mathematics to an equation that can be handled by iter-
ations. The process is started by solving the free-body equation in terms of
elliptic functions to get @W,(t). The time variation of wy(t) is then substituted
into the equation for wj(t), which is inverted to give wi(t) as a definite quad-
rature. These steps are repeated with @ (t) expressed as a quadrature in-
volving the known wg(t), @wi1(t), and so on, to infinity. Thus,

D(t) = o _(t) + oy (t) + xzwz(t) +oee

The method is convergent for small enough A, where \ is a measure of the
torque strength if, initially, the body is spinning near a stable axis. The
stable axes for an asymmetric body are the maximum and minimum moment
of inertia axes. The intermediate axis is unstable. The angular velocity,
obtained from a well-defined set of quadratures, is then, by definition, a
first requirement for the formal solution. Finally, the instantaneous atti-
tude must be expressed. This is done by using w(t) in a special coordinate
transformation that is a function of the w(t) history. This calculation of
attitude is simply a last quadrature to be performed; hence, the complete
problem has been formally solved in the mathernatical sense. The analysis,
while basically theoretical, is practical because the execution of each suc-
cessive approximation involves only time and patience. It is especially
convenient to apply the new method to gravity gradient effects because the
results can be expressed entirely in terms of circular functions. Only the



first perturbation must be calculated, as a result of both the smallness of
the torque and the high initial spin. The next three sections present a new
formulation of attitude, its application to gravity gradient torque in circular
orbit, and the formal solution.

Kinematic Relations

Notation convention. — Two co-origin rectangular cartesian frames are
assumed: (1) B%* which is nonrotational relative to space, and (2) B, which
is attached to the vehicle, both at the center of mass. The following con-
vention will be used: if vi* and vy (i =1, 2, 3) are the components expressed
in B* and B, respectively, of a certain vector, then two vectors, V* and V,
are constructed in a third frame, B!, with components of v;* and vi. Note
that v* is carried into v by the operation of a dyadic, A,whose components
in BT are equal to the elements of the transformation matrix that takes the
vi* into the vi. Although not standard, the notation makes the following
analysis easier to handle.

Attitude as rotational history.— Let Qi* and éi(i =1, 2, 3) be the unit
vectors of the frame B%*. Note that the ?i are constructed in BY from the
components in B of the unit vectors of B*. For generality, Bl was made
a separate frame from B and B*, If BT and B* are allowed to coincide, it
follows that the €;* are fixed, while the /c\i vary in time, Further, the vectors

€. *(t) can be simplified to
A 1
€, %(t) = <0>
0

A 0]

240 = (1

o)
3 ) 1

If wis the angular velocity of B about B* (the components are in B), then the
4. behave according to the law

A A
dté.z-w(t)xc. (1)



The minus sign is needed in equation (1) to describe the motion -of the unit
vectors of B* as expressed in B. By straightforward differentiation it can
be verified that equation (1) is satisfied if €i(t) is defined as the formal
infinite series

éi(t) = £.(0)

.t
J o(t') x é‘i(O)dt'
O

t t!
+fo w(th) XJO w(t") x éi(O)dt”dt' (2)

t tl tll
-j w(t") xf w (t'") xf ot'") x 9.(O)dt”'dt”dt'
o o o 1

wheresbecause vector multiplication is not associative, products are per-
formed {rom right to left. Equation (2) is thus a relation between basis
vectors at time t.

Transformation of an arbitary vector. — The vectors V and V* are now
written in terms of €i(t) and €;%(t)as follows:

1

3
vit) =3 v.*(t)?i(t)

Note that v has components in B, relative to the unit vectors of B* as
expressed in B, equal to the components of V¥* in B*. This is proper if

Vv and v* represent the same abstract quantity. Thus, the importance of
this convention is that though V and v* are constructed in B*, information
is obtained from equation (2) about components relative to the fuhdamental
unit vectors of B.



Since the &.{o) are related to the ei* by the value of A(t) at the time
t = 0, the follo\}ving is obtained for v(t)in terms of v¥(t):

t
v(t) = A(o) - VX(t) -fom(t') x A(o) * V(t)at’

t t!
+fo o (t') xjo o(t'") x A(O) . V*(t)dt”dt' .. (3)

Note that equation (3) is equivalent to a coordinate transformation. Thus,
the usual attitude parameters have been avoided, and equation (3) may be
substituted in the dynamical equations for attitude-dependent torques.

Dynamics

Functional dependence of gravity gradient torque. —At a given point in a
gravitational field, a small body experiences a torque if the vector gradient
is not zero. For a spherical Earth field, the torque is given by the
expression

AR
w
Q

1
®
N>
]
i
N

In the equation above, I'is the unit vector from the Earth's center to the
satellite and 1 is the inertia dyadic of the satellite. For a circular orbit,
the torque is thus a function of both attitude and time. If an oblate Earth is
considered, the time variation in T becomes more complex as the orbit
precesses. No complications result from the field change caused by oblate-
ness, however, because it is of a higher order. Thus, only the forced
motion caused by a change in f' is of interest in this analysis,

Euler's equations.—When described on board, the rotational equation of
motion for a space vehicle in the field of a spherical Earth is as follows:

" A
I- O+ wx I'w:——3-rx1't‘ (4)

Note that T (t) is not known, but /I\‘*(t) (the direction in space) is.
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The following parameter X has a small value of the order of 10™ ' for

close circular orbits:

The torque expression can thus be written in terms of X\, as follows:

A
Mrx I -r)

Complete Solution

Expansion in a small parameter. —The angular velocity, w, is
partitioned in terms of the parameter \ so that

2
@.(t) = @ (t) + hot) + No,(t) + - (5
Similarly, /I\'(t) can be partitioned as a function of \.

?‘(t) = ro(t) + )\rl(t) + )\Zrz(t) + oaes (6)

By using equation (3), the expression for each I(t) can be found as follows:

A
r_(t) =A (o) * ¥

t A
-f w (t') x A(o) - T#(t)dt’
o o]

t t! R
+f0 a)o(t') xfo w o(’c") x A(o) - r *(t)dt"dt'



t . A .
r(t) = jo (') x A(o) * T #(t)dt
+fta> ) x [T (t7) x Afo) - FH(t)dtmdt!
o 1 jo °

t t! A
+jo a)o(t') xjow 1(1&”) x A(o) - r #*(t)dt"'dt

— .

t
r,(t) = _fo ,(t') x A(o) - T *(t)dt!
+ftw (t") B (t") x A(o) - T *(t)dt'dt
X " X o - r:{: T 1

o 2 jowo
t tt N

+f o (t') xf (") x Afo) « B *(t)dt"dt!
(o] (o)

t t!
+j0 © (') xjowl(t”) x A(o) - & *(t)dt"dt'

and so on.

Equivalent system of linear differential equations. — The nonlinear

equation (4) is reduced to a set of linear equations for the w, by equating
in \™ as follows:

. d . _
I.awo+wox1 wo (o]
I-%wl+woxl-wl+wlxI-a)O:rOxI'ro

. = . +r.xI-r
I-%w2+woxl-w2+w2x1-wo+w1xI W, rOXI r, 1 o

- n-1
d cw tw xTI-° + w.x] - w .:Zr.xl-r .

I"c_l'EwnJrO)OXI n n I'o, i n-i 1:01 n-i-1

with n —+ .

11
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The first equation is nothing more than the free-body case first solved by
Jacobi in terms of elliptic functions. The general equation for w, (n =1,
2, ...) can be put into the standard form

Lo =0 o+ (1) (7)

where

@(t)=I-l‘(—woxI+ExI'(uo)

n-1

n-1
-1, . .
q{)n(t) =1 1220 r.ox 1 Tl —iz_:l w; X 1 0 .

with E as the idemifactor.

Formal integration in sequence. — As wo is known, the equation for w]
can be solved, since T, depends only on wg. It follows that w)y can be
obtained, since T) depends only on wp and w). Therefore, if at any point the
solution to all wigl0 <k < nhas been obtained, equation (7) is left for wn,
whose formal solution is verified by straightforward differentiation as

=T -ftr‘lt'- £1)dt! (8)
onlt) = 10 - [ r7hen - g

n

where

t t t!
Ire) = E +jo e(th)dt +JO o) ~fo ptHdttdt' + .- -

£ t t!
-1 1
= - tt)dtt + t') - e(t")dt''dt' -
i) - E joex ) jo@( ) fo

The initial conditions on the wp, n >0 ,were chosen as zero in equation (8)
because by equation (5) only the condition on wg is needed.

Conclusion. -- Equations (7)and (8) define a sequence of explicit oper-
ations; hence, w(t) has been determined formally. Instantaneous attitude
is determined with equation (2), and thus the complete problem is solved.



APPLICATION OF THEORY TO MORL

First Perturbation in Closed Form

Outline.~ Assume an asymmetric vehicle in a precessing circular orbit
with an initial spin, s, given to it at the principal axis of maximum moment

of inertia. If I} <Ip <1I3,
0
o (t) = (0
s

because the vehicle would continue to spin about the larger axis if there
were no disturbing torques.

A .
The time variation of T#(the orbit unit radius as seen in the space frame),
shown in figure 1, can be obtained by carrying the initial unit radius

()

at time t = 0, through the successive rotations - pt, i, and qgt.

Cqt Cpt + Si Sqt Spt

ri(t) = [-Cqt Spt + Si Sgt Cpt {9)
Ci Sqt
where C = cos, = sin.
From the orientation of the vehicle for t = 0 in figure 1, it follows that
A(0) has the form
-Sd Co 0
A (0)=]-C6Cd _-CoS0d Se (10)

SeC¢ S6Se Ce

13
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Location in orbit, R/r\‘ (t)

Initial spin axis

T = Vernal equinox

p = Orbit precession

q = Orbit angular velocity

i = Orbit inclination

0 = Original spin noding angle
& - Original spin azimuth

Figure 1. Orbital Motion and Vehicle [nitial Attitude

Because of the construction of p O(t) and the particular choice of wo(t),
the following definition can be made:

A a.l
aft) = A(0) - T*t) = [ a,
as

The first term in 7p,(t) will be a,while the second, third, etc., terms are,
in order, the following:

t -a
—f woxadt‘:_st ayf) = - stB
o 0

t t! t
j wg x/ wyxa dt''dt' =/ wq ¥ (st'B) dt!
o o o



t t! " t
J e wo* [ x adtidtar = [ wgx (-lszt'2 ) at’
(o] (o]} (o) o

...0.2
133 <1)
0

and so on.

The whole expression for T (t) is divided into odd powers of t multiplied by
the vector B, and even powers of t (greater than zero) maultiplied by the
vector ¥, with alternations in sign for each, as follows:

@ 2k+l t2k+1
Tolt) =alt) - S (- 1)* 2 rEr B
k=0
) Zk Zk
(- 1) _(Z_T‘—_ y(t)
k=1
ro(t) =a(t) - B(t) sin st + y(t) Eos st -3 (11)

The value of ¢1(t) (see equation (7)) can be written preparatory to solving
for wl(t), since the components of @, 8, and v (that is, the a;) are known.

1) =171+ [rg) x T+ ro(o)]

I7 0 O
I=]0 I 0
0 I,
L 5 o

I
M=o £ o

2

0 o 1
I

15



hence

I, - I,
I o2 To3
I, -1
I
103 55— Toz o (12)
L -1, .
T, 01 Yo2

. .th
where r : is the i’ component of I.

The value of @(t} from equation (7) is obtained next to construct I and
T-1l (see equation(8)) and to solve finally for W] in equation (8).

I, -1
0 <ZI 3>s 0
1

0O p O

I3 - Il
o(t) = T s 0 0 = p 0 O
2 0 0 O

-1
Some of the first few integrals in the definitions of I' and T' = from equation

(8) are formed as follows:

o o F
o o o
0
ot
@

0

t
[edt':t p
© 0

[Ote-[otledt”dt' :[:9' (t'@) dt' = Zf t'at!

1 0 0
1:2 t2
=5 pr{ 0 1 0)pu—>H
0 O
t tl t”
. - dtllld 1 I_[ !
fo@ -[o @_[) (2] t''dt e (PHTH)dt
3
t
:PHT—;@

and so on.

16



Thus, I' and r1are expressions which divide themselves into odd
powers of t times © and even powers of t (greater than zero) times H.

g+ L z ( gpitfkﬂ o z M—p t)Zk

PHko

1
=E +H [cosh,/pp.t - 1] + — @sinh /pr t
v P

-l(t) =E+H [cosh\/p—p. t - 1] - 1 @sinh  /pp t
Jok
If pu<0, then (I3 - I;) (I3 - I) >0 and the hyperbolic functions become
circular, thus stating that ) (t) is bounded. When I3 is the largest moment
of inertia, as is assumed in thlS study, the motion of the free body is
known to be stable. Hence, pun<0, and, by a well known identity,

I'(t)=E + H[cos /ppt- 1]+ @sin [fppt (13)
NI
'1(1:) =E + H [cos /-put - 1] - 1 @sin [ppt (14)

“op

The problem now can be solved for w; (t) in equation (8). The solution will
result in an enormous buildup of sums of products of circular functions
because of the structure of equations (9) and (10), which form equation (11),
and the structure of equation (12), which is formed from equation (11),
premultiplication by equation (14), integration, and premultiplication by
equation (}3). To handle this complex situation efficiently, a computer
algebra for circular functions was invented; this is explained in the next
section.

Algebra of circular functions.— It has been stated that the solution of
wl(t) involves the manipulation of a large number of circular terms result-
ing from products of sums. Because circular functions can be either
cosines or sines, some system of identification is needed to keep track of
each term. The situation is more involved when the sum of products
is considered, for example, sin xlt cos x5t added to cos x3t sin x4t sin Xgt.
Uniform notation was used in which only cosines of t are considered. Thus,
terms can be identified with subscripts without regard to the kind of func-
tion. If products of cosines are generated, they can be reduced to sums of
cosines by a redefinition of constants. Thus,

1
cos x,t cos %t =~ [cos (xl + XZ) t + cos (x1 - xz)t] (15)

17
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Cosines were chosen, since, of the two functions, only tf1ey reproduce
themselves in the above type of decomposition. The elimination of sines

is not straightforward, and a superscript was employed with an ensuing set
of algebraic rules of combination. A sine function is converted to a cosine

as follows:

o
sin x°t cos (x t - %)

CcOS xlt

Clearly, xl is a constant only in symbolism and will be handled as such.
The superscript 1 indicates that a subtraction of m/2 is hidden. A super-
script of -2, for example, would mean subtraction of - 7w or, equally,
addition of m. It should also be noted that xK behaves numerically as if it
were equal to %% under operations of integration or differentiation, except
that for integration the value of k must be known to evaluate the limits. If
sums such as those in cos (x;'+ %))t are to be performed, the super-
scripts {or indexes) obey the following rule:

i

'xll:l:xJ:(x *x, (16)

In carrying out the explicit determination of wj(t), the constants in aj cox xjt
are redefined half a dozen times, and each time i runs from 1l to a
larger number. At each step, it is easy to program the defining relations
on a computer to obtain the values of aj, xj, and the index. If all details
were of interest, it would be necessary to do the algebra on a computer
because each component of wl(t) is made up of 1,298 terms. However,

only a small number of terms (those associated with the orbit precession)
are significantly large for spin-axis wander, thus the rest can be eliminated.

Angular velocity. -- The problem here is to obtain a more detailed de-
scription of wi(t) in closed form from the preceding outline by use of the
algebra of circular functions just developed. The following operations are to
be performed in order: A(o) ° r*(t) = a(t) is obtained from equations (9) and
(10), then rg(t) is obtained from equation (11), ¢1(t) is obtained from equation
(12), and wj(t) is obtained from equation (8) using ["and [ -1 in equations
(13) and (14%. The results up to ¢j(t) are given below (see equation (20))for
w](t) to show the large number of circular functions required.




&

& (t) =

.
"

D, . cos ajt

9
B, .cos x.t
z 3, J

E. . cos (jt

[

Z EZ,j cos ejt

(17)

(18)

(19)

19
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The defining relations from equations (9) and (10) for a (t) are, with the use
of equation (15),

S R A T

=Y -7

X3 =3 T yy
1

By 1534
!

By =748

B, .=+C. A

1,377 €1 211

B.  =icC. A

1,4 -2 C1 811
o

By s -4

1

Bl e 74812

B, _=4C.A

1,777 1 812

B, . =+C. A

1,8 -2 €1 %12

By g = Cp A3

cos ylt
cos yzt
cos y3t

cos y4t

o2/
"

1

h

i

cos pt
cos qt
sin pt

sin qt

Y3 = Y4

31y,

Y3 - Y2

1)

vty

"

Y1 - Y4

!
N



with

C1 =sin i

C2 = cos i
and
Ayy = -sing A12=cos¢
A21=_cosecos¢ Azzz-cosesin¢
A31 = sin 6 cos ¢ A32 = sin 6 sin ¢

so that the result is (17).

The defining relations for ro(t) (see equation (l1)) are

coOs zlt = cos st

cos zzt = sin st

ai -xi +z1
B4, T % "%

i=1, 2, , 9
21+ - % T2
a2741 T - 72

_ 1 1
Diiv =781, Doiv =3B,
D -1p D ! g
1, 18+ 7 Z 72,1 2,18+ 77 71,4

resulting in equation (18).

The analogous relations for ¢l (see equation (12)) are

Az =o
A23=S1n6
A33=cose
=1,2,...
=i+ 9j
=0,1

» 9
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€144+
€216+
€288+
€360+
€432+
€504+

€576+

1,1

E 7244

By 144+ 7

E; 2164+

E; 288+
E) 360+

E; 4324

Bl 504+

E

1, 576+" -

Q
o
-

173,172,1

Q

183,202

Q

183,302 ;

Q
os!

183,402 5

M= N
0

183,502 5

Q

123,652, 1

Q
W
g

173,772,1

@)
W

183 802 5

N~
Q0
(o]

183,902 5

3641 T *1 T ¥

“108+i T *2 ~ ¥

€180+ T ¥3 ¥

252+ T %4~ 3

€324+ = %5 T

396+ = %6 - 3

468+ T F7 - ¥

540+ ~ *8 ~

612+ = X9 -

E -2a B, .D
2,1 z 9283, 1P1,4

B 72+ :ziGzB3,le1,i

B, 1444 T 7 G283, 30,5

B, 2164~ '21' G283, 4P, 5

B2, 288+ = 3 G B3, 501, 4

E2, 360+ :zl‘GzB3,6D1,i

B2, 43241 :21"G233,7D1,i

Ea, 504+ :21'G2B3,8Dl,i

B, 57641 ~ 3 G283, 901, 4

1, 2, ..., 36



|a

G, = ——o

thus giving the first two components of equation (19).

No calculations will be made of F;j or f; in equation (19) because it
can be seen from the following formulations that they are unnecessary. The

€ and Ei’j can be written in a more compact form as
- x. + a. i=1,2, ..., 36
“36[2(j- 1]+ S Tt
e =1, 2, . 9
36[2(j-1)+1]+i S et J
1 .
= e 1= 1, oo ey 36
By se[2-1]4 = Z ©1 B3,k 2,1 o
j=0,
1
B2, 36[j+2(x- 1))+ =5 GyBs Py k=1, » 9

The index associated with ¢x has been neglected thus far; however, because
of equation (16), the calculation of the index is seen to be straightforward.

In fact, the recursive relations for the indexes have the same form as the de-
fining relations for the xj, aj, and the ¢j, with the following initial conditions:

index (y,) = 0
index (yZ) = 0
index (y3) = 1
index (y4) = 1
index (Zl) = 0

index (ZZ) = 1
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Next, ¢1 in equation (12) is used with the values of "andI""! in equations (13)
and (14) to prepare to solve for aj in equation (8).

¢11 cos‘/-ﬁLt+ /"%"1’12 sin \/-pp t
r-1 . - , p .
(t) - (1) = ¢), cos [pHt +./- 417 sin/-put

$13

To obtain wj(t), the above equation must be integrated, which, for typical
terms (the index of each €¢j must be observed), results in the following:

t . I . t
f cos €t' cos \/-ﬂ t'dt' sin( et y-pp) t' | sin (¢ - V-pp) t'
o 2( et -pp) 2( e- -pH) o

sin (e + \/-pp) t - sin {(e +v-pr) 0 l
2(e + /-p1)

sin (e- V-pu) t - sin {(e - Vipp) 0}
2( € - \/-pH)

t
t ST I
f coset' sin Jpp t'dt' = . 22 (et v-pp)t' 4 cos (¢~ voph) t
o 2(e + /-pp) 2(e - /~p1) °

+

_cos (e +V-pi)t ~ cos{(e+\/_ﬁx) 0 }
2(< + /o)

cos(e - yopr) t - cos (e - Vopp) 0 |
2(e - J-pn)
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The circular functions are expanded and combined into the more usable
forms

sin (e + /- pp)t + sin (¢ - / - pp)t _ sin €t cos V- ppt + cos et sin V- ppt
2(e+ /- pp 2(e - V- pH) 2(e + - pH)

+ sin et cos V- ppt - cos et siny - ppt

2(e - V- pn)

€ .
= ——— sin €t cos - ppt
€ + pp

and

cos (¢ + /- pp)t 4 cos (¢ - V-pu)t_ cosetcos V-ppt - sinetsin /-ppt

2(e + /- pH) 2(e - /- pR) 2(¢ + /- pM)
4 Cosetcos vV -plt + sinetsin /- ppt
2(e - V- pM)
= ___2______,—p|~1. cos ¢t cos y/ -ppt
€ + pp

€ . .
+——Z—— sin et sin v - ppt

€+ pH

The same operations are performed for the terms evaluated at t = 0.

Now
the complete integrals can be written as follows:

t
f ¢11(t') cos / - ppt'dt' = Al(t) cos /- ppt + Bl(t) sin / - ppt _Al(o)
o

where

€. )
J .
—2—— E - Sin €jt
J

648
1,
=1 €. T pu .

ALl) =

1 €

j
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B.(t) = - v-Pk @ cos €.t
1 €2 . 1,
j=1 ‘J- + pp
and
t
I ¢>12(t') sin V-ppt'dt' = Bz(t) cos V-ppt+ Az(t) sin V- ppt - Bz(o)
o
with
648
2: V-PE
B,(t) = - PE cos €.t
2 Z1on %
3=l
648 c.
A (t) = J __E, .sine.t
2() ¢ + " 2,_]
Therefore,

L
J relen - ¢, ar

@)

may be written as

[Al(t)+ \/__%Bz(t)]cos -p|.Lt+[Bl.(t)+\/%A2(t)]sin -ppt-[Al(oH@Bz(o)]
a0+ /-2 B @)]cos put+[B 00+ [ A @)]sin mt_[Az(o)+EBl(o)]
t
s ¢, 5(t") at’
(o]

Lpl(t) cos /-ppt + - % 412(1&) sin /-ppt L{Jl(o)
= 4,(t) cos Veppt + [ - By (1) sin oput |+ Wy(o)

b5 (t) 0
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for

— g
G0 = A0+ /- 5B, ()
Yo (t) = A (1) + /-%Bl(t)
t
l113(*:) = J; ¢13(t')dt'

It then follows that

t
f role) - e ar = TN - g + (o)

o
is true,

Thus, upon multiplying on the left by T'{t), a simple relation for W, (t)

@, (t) = ¥(t) + T(t) - Y(o)

is obtained and is written in terms of the cosine notation.

—
N

98

G, .cos y.t
jg 1,j Y;

for

1,2,+--,

cos yjt cos €.t j

cos (Y648 " J-)'t = sin ejt
cos (y1297)t = cos /-ppt

cos (Y1298)t = sin  -ppt

i

(20)

648
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j=1,2,---, 648

€5 tew
G1, 648+j ] E1;
, i 2+ o %
648 1 -
Gl, 1297 igl e_2+_p|_; [-e El, sin (e io) + HEZ, cos (eio)]

648
_ 1 M .
Gl’ 1298 = Z P [- / - - eiEZ’imn(eio) + /-pp 1,i ¢°s (eio)]

i=1 %5 ek
_ P - .o
Gy ;= -—t—E jo=1,2,+-+, 648
€7 + pIJ_
J
G2, 648 =,
’ +j € + ’j
§t e
648 1
GZ, 1297 = 7—_— ['eiEZ,i sin (eio) + pEl,i cos (eio):I
648 1 5
GZ, 1298 = - o [- /_F EiEl,i sin (eio) + /-pr EZ,i cos (eio):,
i=1 4

Only the first two components of @,(t) are required, as will be shown; each
has now been expressed by recursive relations as a sum of 1, 298 circular
functions. The amount of work saved by the algebra of circular functions
is apparent, for to have determined w(t) by brute-force manipulations would have
required many pages and the possibility of error would have been greater. Note
that 1 X @ (t)! 22 | w (t) | because of the formation of the coefficient leading
to the G,,: and the stnallness of A\ . This shows that the coning about the
instantanéous angular momentum is very small, although the angular
momentum has a larger but slow wander in space (much like a fast top).
The angular-momentum wander as seen on board the vehicle must be
determined next.



Spin-axis direction. — In the last section, a closed form expression for
the first perturbation of angular velocity was determined as w(t) =W o(t) +
A w](t). Now the spin-axis wander caused by the additional term Aw](t) must
be determined. This is best accomplished by expressing the initial direction
in space,j (o), as seen on board the vehicle at time t.

0
A
h(o) =[ 0
1

Substituting the above in equation (3),

A A t A t t A
h({t) = h(o) - j w(t') x h(o)dt' + J w(t') x I w(t'") x h(o)dt''dt' ~ «..
o

o] o]

where
oy ()
wlt) = s az(t)
1+ 0.3(t)
with
y 1298
a.(t) = < Gi, cos yjt i=1,2
j=1
A t
— 1 1
0'3(t) = 'gf ¢13(t ) dt
o
Because aj< < |, products can be neglected in evaluating each term in the
expression of /l;(t).
A © hl
hit) = 20 8 = h
; k 2
x=0 W
-L3
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In the definitions of 8 below, the number of ones in front of the «j represents
the number of integrations to be performed, for example,

t pt! th ™ . .
- ]_111(11 = . f J J f al(tlv)dtlvdtnldtndt!
o o o] (o]

so that
0
5, =1 ©
1
1(12
31 = . s _lul
0
llo.1
2
&, = s 11(12
0
..1110.2
B 3
53 = - 8 llla1
0
_llllcn.1
_ 4
84 = 8 -1111(12
0



Note that as the multiple integrations progress, more powers of Y: are
thrown into the denominator. As the integrals vary from 0 to ¢, e index
associated with Yj must be observed for evaluating the limit at t = 0,

t .
j cos yt'dt' = 1 [sin yt - sin (yo)]
° Y

t Lt'
J J cos yt"dt"dt' = - —12- [cos vyt - cos (yo)] - sin (yo)
Y
o Jo Y
t t' Lt 1 t tZ
J J j cos yt"dt"dt"dt' = - —g[sin yt - sin (yo)] t— cos (yo) - - sin (yo)
o Yo Yo v v Y

When the required integrations are performed, the algebra can be arranged

as follows:
S5
4.;_5_+...>
j

2.2 4.4
+ sin (y.o)| — 1__5---1--E—+.—,_St o e
Yj Yj 2 4.

1388 N
h (t) = — G, .{sin y.t(— +
1 i s 2, I\Y;

-<Lu| [7)
T w

3 2.2 4 4
+5 (.8t st ..,
-3 2 47
Y
J
5 2.2 4.4
S s t st
t=3 Q-- 7t "") *"‘J
Y
J
sz( s3t3
+ cos .0 st - T e
(YJ);'Z 3T )
J

4 (3,3
+_S.-4.<5t___3.r—+...) 4 o0
Y.
J
31



1298 A s2 54 56
o456, C°sYt(—z +_4'+—6'+")
J= Yj Yj YJ
53t3
+ sin (y 0)[-\(_? (- st + =1 - ...>
s3 s3t3
+-—3~(—St+7’—!—— ")+ ..
Y
J
s2 sztz
+ cos (on) ?2-<1 - —= +> oo
j

A similar expression results for hp(t), so that when the infinite series are
summed up, the following expressions are obtained for hj(t) and hy(t):

\ 1298 1 SZ
hl(t) ol Z Gl,j [-—Zcos yjt

=1 .
J 1 - YJ

-<N‘m
Cuds I

2
s . . s
- — Ssin .0) sin st + cos .0) cos st
Y- (YJ ) — (YJ ) ]

J Yj

+G, . |- Zsiny.t+2 sin .0) cos st
Z,J[ Y; Y Y; (YJ)

2
+ 52_ cos (yjo) sin st]

Y;



X 1298 1 s2
j=1 1.5 Y
- 7— J

Y3

2
- -3— sin (yjo) sin st +iz- cos (yjo) cos st]
J YJ-

+G, .|= sin .t_isin .0 os st
l,J[Y in y;t - osin {y50)

j j
2
- i,— cos (yj o) sin st]
Y

The cosine notation again is used to rewrite h] and hj.

2598
h,(t) = N cos n.t (21)
1 : 1,
j=1
2598
hz(t) = NZ, cos .t (22)
j=1
with
cos T]J.t: cos yjt j=1,2,---, 1298
cos (n1298+j)t = sin yjt
= cos st

cos (n2597)t

cos (n2598)t = sin st
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N1, 1298+

1,2597

1,2598

N

2, 1298+j

N, 2597

N, 2598

by 1 s
s 2 ['7. G,

s
; cos (yio) +T G2

B

i sin (yio)}

1

2
. s
; sin (yio) t = GZ,i cos (yio)]

Y-

1

s .
; cos (\{io) -3 Gl,i sin (yio)]

1



A total of 5,000 terms is involved

From the denominators.

I
SZ
1 - =2
y 2
j
and the formation structure ofe ., it can be seen that the most important
contributions occur when
. = s&
Yl P
Y. = s¥2p

where p is the orbit-precession rate. As seen in space, the terms con-
taining the corresponding frequencies p and 2p contribute most to the spin-
axis wander.

Numerical Results

Two examples were investigated, one with the sun line as the vernal
equinox, making ¢= 0 and 6= w/2 in A(o) and figure 1, and the other with
the conditions three months later, so that ¢ = n/2 and 6= /2 - €(where€
is the obliquity of the ecliptic). Both special examples required consider-
ably less algebraic calculations than the general case. These calculations
were performed for the most part with a slide rule. MORL constants used
for the calculations are

I, = 4.0x10° slug £t
7 2 . .
I, = 6.84 x 10" slug ft moments of inertia
I, = 6.85x 10 slug it°
i = 28.6° orbit inclination
s = 3.96x 107! rad/sec spin
p = 1.454 x 1076 rad/sec orbit precession
q = 2.34x 10°% rad/sec orbit angular rate
and
¢ = 23.5° obliquity of the ecliptic
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For each example, an upper bound of 2.5° was found on the angle of wander.
The spin axis (maximum moment of inertia) deviates from the instantaneous
angular momentum vector by at most 0.4 seconds of arc; hence, there is no
coning. Thus, the motion in space is that of a slow excursion at orbit-pre-
cession frequency and does not exceed 2.5°.
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CONCLUSION

The spin-axis stability (in inertial space) for an asymmetric body under
the action of gravity gradient while in orbit about an oblate Earth was
investigated., MORL parameters were used. A new method of iterations for
rigid motion, resulting from a different technique of expressing attitude,
yielded a series of approximations with very fast convergence. It was found
that there is no appreciable coning; specifically, the spin axis (axis of
maximum moment of inertia) deviates no more than 0.4 seconds of arc from
the angular momentum vector as it wanders in space. The slow variation of
angular momentum from initial position was found to be tolerable; it
amounted to no more than 2. 5°. The most important discovery was that the
upper bound of 2. 5% is independent of boundary conditions which involve
different spin-axis angles to the Earth's equator.
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APPENDIX

Extension to Elliptic Orbits

The spin-~axis stability analysis method as it is applied to an oblate
Earth field involves an inexact description of the orbit radius vector., An
actual near-circular orbit around an oblate Earth is replaced by uniform
circular motion in a plane that precesses at a constant rate about a fixed
line, the polar axis, Near-elliptical orbits can be treated similarly by
replacing the actual orbit by a truly elliptical orbit in a plane assumed to
precess at a constant rate about the polar axis. A second uniform motion
representing the precession of perigee also can be added vectorially.

Since the last two precessions are simple to incorporate, it will be assumed
that the orbit is taken in the % 1%, 3 2% plane. Equation (4) shows that the

. . 7N
variables of interest in the torque expression are 31 and T *(t); therefore
R7(t)
these must be obtained as a function of time., To employ the expansion in
a small parameter, however, the parameter must be changed to ',
defined as follows:

where A is the semimajor axis, No real change in parameter order of

3
magnitude occurs, hence [R-‘?t—)] is now of interest

First, R{(t) (whose expansion in terms of the eccentricity is given on
page 171 of reference 1) must be calculated. By rearranging terms, R(t)
can be expressed as Fourier cosine series in which n is the mean angular
motion and e is the eccentricity.

2
R{(t) _ e _ 3.3 5 5
e 1 +—‘2 + e+8e ——192e +...) cos nt
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+ (-§e3+—14—5ée5—...)cos3nt
+ (-%e4+%e6—...)cos4nt
+(-—;§—2e5+...)c055nt
+(-%e6+...)cosént

+ ...

The coefficient of cos knt is an infinite series in e with the lowest power
equal to k. The order of this coefficient is identified as k; the coefficient
is identified as by. If a certain e has been chosen, the series can be cut
off at some k = f5. At a given k, by can be carried out to the required
accuracy, where it will be called b'y.. Thus,

R{t)

2 fo
: & b knt
T = 1 + (2 + z kCOS )
k=1

1
For 3 , the Binomial theorem is used to group the terms as follows:
R7(t)
2

A 3 e2 -
a8 2 _3—+Zb'cosknt
lR(t)] 1 Z k )

k=1

I}

2 © >

6 (5« 2 b', cos knt)
k=1

Lo
eZ 3
e !
- 10 (& 4 Z b!, cos kat)
K=1

+ . . .



R(t)

and convergence isassuredbecause A= 1 +§ with. |§I < 1 for all e. Note

that only a finite number of terms significantly contributes because of the
products of the b'y. In particular, the jth power of a bracket will contain
coefficients of the smallest order j. In other words, the desired functional
relation is a finite sum of finite products of circular terms.

Next, itis important to express the time variation of /1\'*(t), which is

best done by giving the 1 and 2 components of this unit vector in terms of
the true anomaly v.

cos Vv
A .
ri(t) = sin v

0

An expansion of v in terms of e from page 171 of reference 1 can be
arranged to form a modified Fourier sine series.

3 3 50 5 .
v = nt + <2e—12e +960e —...) sin nt

5 2 44 4 , 85 _6_ -
+ (Ze — 2 e +—60e ) 31n_2nt

O

+ <1—%e6—...) sin 6nt
+ ...

As before, the coefficient (series in e) ag of sin knt is of order k, hence
the Fourier series may be cut off at k = £) for a chosen e. It is again
assumed each a; 1s carried out to the required accuracy, a'y.

jl
cos (nt + z a'k sin knt)
k=1
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a2

a.'k sin knt>

NN

sin (nt +
k=1

If the above expressions are expanded by the angle sum rule, additive terms
of products of the following form appear:

cos (a.'k sin knt)

sin (a'k sin knt)

These expressions can be written as infinite sums of integral-order Bessel
functions (reference 2, page 361).

@
sin knt) = Jo(a'k) + 2 z JZi (a'k) cos 'Zi knt,

i=1

cos (a'k

@
sin (a'k sin knt) = 2 z J2i+l (a'k) sin I(Zi+1) k.nt,
i=0

In the right-hand sides, only a finite number of terms contributes because of
the smallness of the a'k for large enough k and the form of Ji.

1 i 2 (—%xz)j
i) = (EX) z TT(E+]+1)

3
Thus, both h{'%)—] and the components of i‘\*(t) are expressed as finite

sums of finite products of circular functions of time. By the operations of
equations (11) and (12) and the formation of wl(t) in equation {8), this

3
A .
condition is retained. (Note that in equation (12) the factor [W] must
be inserted.) '

It has been shown that algebraic manipulations of circular functions can be
performed by a computer. Hence, a very accurate description of elliptic
motion is integrable for gravity torque effects on an asymmetric body. The
details and the amount of work depend on the value of e.
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